Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review

Date: March 18, 2021

Prepared by: Christopher L. Shope

Standards and Technical Services

Facility: Fresenius Medical Care

475 West 13th St, Ogden, UT UPDES Permit No. UT-0023752

Receiving water: Plain City Canal (2B, 3E, 4) into Mill Creek (2B, 3D) into Weber River

(2B, 3C, 3D, 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality (DWQ).

Discharge

Outfall 001has a design flow rate of 0.0215 MGD, consisting of non-contact cooling water and stormwater. Outfall 001 enters the stormwater infiltration pond. Excess storage from the stormwater infiltration pond exits the pond at Outfall 002, with a design flow rate of 0.0485 MGD and includes stormwater and flow from Outfall 001. The point of compliance remains Outfall 001.

Receiving Water

The receiving water for Outfalls 001 and 002 is a concrete storm drain that conveys water to the Plain City Canal, into Mill Creek, into the Weber River, and into Great Salt Lake

Per UAC R317-2-13, the designated beneficial uses of the affected assessment units in the immediate area are (13.13): "all waters not specifically classified are presumptively classified: 2B, 3D" into (13.4a): "Weber River, from Great Salt Lake to Slaterville diversion, except as listed below: 2B, 3C, 3D, 4". However, the Plain City Canal can be designated as a tributary to Mill Creek, a stream not specifically classified, an agricultural irrigation canal, or a drainage canal. DWQ believes that the Ogden Nature Center has modified the Plain City Canal into an irrigation canal. Therefore, the designated beneficial uses for the Plain City Canal are (13.9): "All irrigation canals and ditches statewide, except as otherwise designated: 2B, 3E, 4".

- Class 2B -- Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3C -- Protected for nongame fish and other aquatic life, including the necessary aquatic organisms in their food chain.
- Class 3D -- Protected for waterfowl, shore birds and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain.
- Class 3E -- Severely habitat-limited waters. Narrative standards will be applied to protect these waters for aquatic wildlife.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). The only upstream monitoring data available for the Mill Creek receiving water was located at USGS 0411433111564801 Mill Creek Near Pioneer Power Plant approximately 3.6 miles upstream and used to evaluate ambient or background flow conditions. However, extremely limited flow rate data was available from 1979 and 1980. Since Plain City Canal is considered a water of the state, it is identified as the receiving water. However, no discharge measurements are available. A site inspection of the Plain City Canal on March 10, 2021 at baseflow conditions, exhibited negligible flow. For these reasons, no flow conditions in the receiving water are reasonable and requires that the wasteload analysis compliance point be at Outfall 001.DWQ used a conservative estimate for the annual critical flow in the receiving water at Plain City Canal of 0.001 ft3/s.

Ambient, upstream, background receiving water quality was also interrogated using a combination of data from USGS 0411433111564801 Mill Creek Near Pioneer Power Plant for spring and summer conditions, the previous 2015 wasteload analysis, and visual observations of the receiving water. The average seasonal value was calculated for each constituent, where data was available, in the receiving water. Effluent discharge parameters, where available, were characterized using data supplied in the permit application, the discharge monitoring report (DMR), and the previous 2015 wasteload analysis estimates at monitoring site Outfall 001 (DWQ 4923060).

Total Maximum Daily Load (TMDL)

According to the Utah's 2016 303(d) <u>Water Quality Assessment Report</u> dated December 7, 2016, the receiving water for the discharge, Weber River and tributaries from Great Salt Lake to Slaterville Diversion (UT16020102-001_00) was listed as "Not Supporting" for OE Bioassessment and Total Ammonia with impaired beneficial uses 3C and 3D.

DWQ has not completed a TMDL for OE Bioassessment or Total Ammonia in the Weber River and has set the development priority as "Low".

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and for chronic conditions is 2500 ft, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone.

The modeled plume width at 15 minutes of travel time or 2 ft is 100% of the river and the plume width at 2500 ft downstream is 100% of the width of the river. Therefore, the plume is considered to be completely mixed. Acute limits were calculated using 50% of the seasonal critical low flow. However, because there is no quantifiable background discharge, there is not a mixing zone.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were determined in consultation with the UPDES Permit Writer, the renewal application, and the industry SIC codes from https://www.osha.gov/data/sic-search. The potential parameters of concern for this facility include: Temperature, TDS, BOD5, metals, and major ions. Utah DWQ evaluated the BOD5 to achieve a minimum DO concentration (DO sag) of 5.0 mg/l according to R317-2.14.2. The BOD5 concentration will remain 25 mg/l, as in the previous wasteload analysis.

WET Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC_{50} (lethal concentration, 50%) percent effluent for acute toxicity and the IC_{25} (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC_{50} is typically 100% effluent and does not need to be determined by the WLA.

Table 2: WET Limits for IC₂₅

Outfall	Percent Effluent
Outfall 001	99.1%

Wasteload Allocation Methods

Effluent limits were determined for conservative constituents using a simple mass balance mixing analysis (UDWQ, 2021). The mass balance analysis is summarized in the Wasteload Addendum.

The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. However, temperature and ammonia concentration of the effluent were not provided. The AMMTOX Model developed by University of Colorado and adapted by Utah DWQ and EPA Region VIII was used to determine ammonia effluent limits (Lewis et al., 2002). The analysis is summarized in the Wasteload Addendum.

Water quality models and supporting documentation are available for review upon request.

Utah Division of Water Quality Wasteload Analysis Fresenius Medical Care, UPDES Permit No. UT-0023752

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is not required for this facility because the permittee is not requesting an increase in flow over that authorized in the existing permit.

Documents:

Wasteload Document: Fresenius_WLA_2021.docx

Wasteload Analysis and Addendums: Fresenius_WLA_2021.xlsm

References:

Lewis, B., J. Saunders, and M. Murphy. 2002. Ammonia Toxicity Model (AMMTOX, Version2): A Tool for Determining Effluent Ammonia Limits. University of Colorado, Center for Limnology.

Utah Division of Water Quality. 2021. *Utah Wasteload Analysis Procedures Version 2.0.* https://documents.deq.utah.gov/water-quality/standards-technical-services/DWQ-2021-000684.pdf

WASTELOAD ANALYSIS [WLA] = not included in the WLA Addendum: Statement of Basis

28-Apr-21 4:00 PM

Facilities: Fresenius Medical Care UPDES No: UT-0023752

Discharging to: Storm drain TO Plain City Canal TO Mill Creek

I. Introduction

Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen.

Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc).

The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

II. Receiving Water and Stream Classification

Storm drain TO Plain City Canal TO Mill Creek: 2B, 3C, 3D, 3E, 4

Antidegradation Review: Level I review completed. Level II review is not required.

III. Numeric Stream Standards for Protection of Aquatic Wildlife

	Total Ammonia (TNH3)		a function of Temperature and ind. See Water Quality Standards
ı	Chronic Total Residual Chlorine (TRC)		mg/l (4 Day Average) mg/l (1 Hour Average)
	Chronic Dissolved Oxygen (DO)	N/A	mg/l (30 Day Average) mg/l (7Day Average) mg/l (1 Day Average)
	Maximum Total Dissolved Solids	1200.0) mg/l

Acute and Chronic Heavy Metals (Dissolved)

	4 Day Average (Chronic)	Standard	1 Hour Ave	rage (Acute	e) Standard
Parameter	Concentration	Load*	Concentration	•	Load*
Aluminum	87.00 ug/l**	0.061 lbs/day	750.00	ug/l	0.526 lbs/day
Arsenic	150.00 ug/l	0.105 lbs/day	340.00	ug/l	0.238 lbs/day
Cadmium	1.90 ug/l	0.001 lbs/day	5.57	ug/l	0.004 lbs/day
Chromium III	211.92 ug/l	0.149 lbs/day	4433.71	ug/l	3.108 lbs/day
ChromiumVI	11.00 ug/l	0.008 lbs/day	16.00	ug/l	0.011 lbs/day
Copper	23.85 ug/l	0.017 lbs/day	39.41	ug/l	0.028 lbs/day
Iron			1000.00	ug/l	0.701 lbs/day
Lead	12.88 ug/l	0.009 lbs/day	330.60	ug/l	0.232 lbs/day
Mercury	0.0120 ug/l	0.000 lbs/day	2.40	ug/l	0.002 lbs/day
Nickel	132.13 ug/l	0.093 lbs/day	1188.44	ug/l	0.833 lbs/day
Selenium	4.60 ug/l	0.003 lbs/day	20.00	ug/l	0.014 lbs/day
Silver	N/A ug/l	N/A lbs/day	25.04	ug/l	0.018 lbs/day
Zinc	303.93 ug/l	0.213 lbs/day	303.93	ug/l	0.213 lbs/day
* Allow	ved below discharge				

^{**}Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3

Metals Standards Based upon a Hardness of 300 mg/l as CaCO3

Organics [Pesticides]							
4 Day Average (Chronic) Standard 1 Hour Average (Acute) Standard							
Parameter	Concentration	on Load	* Concentration	on	Load*		
Aldrin			1.500	ug/l	0.001 lbs/day		
Chlordane	0.004 ug/l	0.003 II	os/day 1.200	ug/l	0.001 lbs/day		
DDT, DDE	0.001 ug/l	0.001 II	os/day 0.550	ug/l	0.000 lbs/day		
Dieldrin	0.002 ug/l	0.001 II	os/day 1.250	ug/l	0.001 lbs/day		
Endosulfan	0.056 ug/l	0.033 II	os/day 0.110	ug/l	0.000 lbs/day		
Endrin	0.002 ug/l	0.001 II	os/day 0.090	ug/l	0.000 lbs/day		
Guthion			0.010	ug/l	0.000 lbs/day		
Heptachlor	0.004 ug/l	0.002 II	os/day 0.260	ug/l	0.000 lbs/day		
Lindane	0.080 ug/l	0.047 II	os/day 1.000	ug/l	0.001 lbs/day		
Methoxychlor			0.030	ug/l	0.000 lbs/day		
Mirex			0.010	ug/l	0.000 lbs/day		
Parathion			0.040	ug/l	0.000 lbs/day		
PCB's	0.014 ug/l	0.008 II	os/day 2.000	ug/l	0.001 lbs/day		
Pentachlorophenol	13.00 ug/l	7.658 II	os/day 20.000	ug/l	0.014 lbs/day		
Toxephene	0.0002 ug/l	0.000 II	os/day 0.7300	ug/l	0.001 lbs/day		

IV. Numeric Stream Standards for Protection of Agriculture

	4 Day Average (Chronic) Standard		1 Hour Average (Acute) Standard		
	Concentration	Load*	Concentration	Load*	
Arsenic			100.0 ug/l	lbs/day	
Boron			750.0 ug/l	lbs/day	
Cadmium			10.0 ug/l	0.00 lbs/day	
Chromium			100.0 ug/l	lbs/day	
Copper			200.0 ug/l	lbs/day	
Lead			100.0 ug/l	lbs/day	
Selenium			50.0 ug/l	lbs/day	
TDS, Summer			1200.0 mg/l	0.42 tons/day	

V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters)

4	4 Day Average (Chronic) Standard			cute) Standard
Metals	Concentration	Load*	Concentration	Load*
Arsenic			ug/l	lbs/day
Barium			ug/l	lbs/day
Cadmium			ug/l	lbs/day
Chromium			ug/l	lbs/day
Lead			ug/l	lbs/day
Mercury			ug/l	lbs/day
Selenium			ug/l	lbs/day
Silver			ug/l	lbs/day
Fluoride (3)			ug/l	lbs/day
to			ug/l	lbs/day
Nitrates as N			ug/l	lbs/day
_				
Chlorophenoxy Herbicid	es			
2,4-D			ug/l	lbs/day
2,4,5-TP			ug/l	lbs/day
Endrin			ug/l	lbs/day
ocyclohexane (Lindane)			ug/l	lbs/day
Methoxychlor			ug/l	lbs/day
Toxaphene			ug/l	lbs/day

VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics]

Maximum Conc., ug/l - Acute Standards

	Class 1C		Class 3A, 3	3B
Toxic Organics	[2 Liters/Day for 70 Kg F	erson over 70 Yr.]	[6.5 g for 70 Kg l	Person over 70 Yr.]
Acenaphthene	ug/l	lbs/day	2700.0 ug/l	1.59 lbs/day
Acrolein	ug/l	lbs/day	780.0 ug/l	0.46 lbs/day
Acrylonitrile	ug/l	lbs/day	0.7 ug/l	0.00 lbs/day
Benzene	ug/l	lbs/day	71.0 ug/l	0.04 lbs/day
Benzidine	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
Carbon tetrachloride	ug/l	lbs/day	4.4 ug/l	0.00 lbs/day
Chlorobenzene	ug/l	lbs/day	21000.0 ug/l	12.37 lbs/day
1,2,4-Trichlorobenzene				
Hexachlorobenzene	ug/l	lbs/day	0.0 ug/l	0.00 lbs/day
1,2-Dichloroethane	ug/l	lbs/day	99.0 ug/l	0.06 lbs/day

1 1 1 Tuickleusetheuse					
1,1,1-Trichloroethane	/1	ll /-l - · ·	0.0	/1	0.04 15-7-1
Hexachloroethane	ug/l	lbs/day	8.9	ug/l	0.01 lbs/day
1,1-Dichloroethane		II / L	40.0	/1	0.00 !! . / !
1,1,2-Trichloroethane	ug/l	lbs/day		_	0.02 lbs/day
1,1,2,2-Tetrachloroetha	ug/l	lbs/day		ug/l	0.01 lbs/day
Chloroethane				ug/l	0.00 lbs/day
Bis(2-chloroethyl) ether	ug/l	lbs/day		ug/l	0.00 lbs/day
2-Chloroethyl vinyl ethe	ug/l	lbs/day		ug/l	0.00 lbs/day
2-Chloronaphthalene	ug/l	lbs/day	4300.0	ug/l	2.53 lbs/day
2,4,6-Trichlorophenol	ug/l	lbs/day	6.5	ug/l	0.00 lbs/day
p-Chloro-m-cresol			0.0	ug/l	0.00 lbs/day
Chloroform (HM)	ug/l	lbs/day	470.0	ug/l	0.28 lbs/day
2-Chlorophenol	ug/l	lbs/day	400.0	ug/l	0.24 lbs/day
1,2-Dichlorobenzene	ug/l	lbs/day	17000.0	ug/l	10.01 lbs/day
1,3-Dichlorobenzene	ug/l	lbs/day	2600.0	ug/l	1.53 lbs/day
1,4-Dichlorobenzene	ug/l	lbs/day	2600.0	ug/l	1.53 lbs/day
3,3'-Dichlorobenzidine	ug/l	lbs/day	0.1	ug/l	0.00 lbs/day
1,1-Dichloroethylene	ug/l	lbs/day		ug/l	0.00 lbs/day
1,2-trans-Dichloroethyle	ug/l	lbs/day		ug/l	0.00 lbs/day
2,4-Dichlorophenol	ug/l	lbs/day		ug/l	0.47 lbs/day
1,2-Dichloropropane	ug/l	lbs/day		ug/l	0.02 lbs/day
1,3-Dichloropropylene	ug/l	lbs/day	1700.0	ug/l	1.00 lbs/day
2,4-Dimethylphenol	ug/l	lbs/day	2300.0	ug/l	1.35 lbs/day
2,4-Dinitrotoluene		lbs/day	9.1	ug/l	0.01 lbs/day
2,6-Dinitrotoluene	ug/l	lbs/day		_	0.00 lbs/day
	ug/l	•	0.0	ug/l	•
1,2-Diphenylhydrazine	ug/l	lbs/day	0.5	ug/l	0.00 lbs/day
Ethylbenzene	ug/l	lbs/day	29000.0	ug/l	17.08 lbs/day
Fluoranthene	ug/l	lbs/day	370.0	ug/l	0.22 lbs/day
4-Chlorophenyl phenyl ether					
4-Bromophenyl phenyl ether	,,		470000	,,	400 44 11 / 1
Bis(2-chloroisopropyl) e	ug/l	lbs/day		ug/l	100.14 lbs/day
Bis(2-chloroethoxy) met	ug/l	lbs/day		ug/l	0.00 lbs/day
Methylene chloride (HM	ug/l	lbs/day		ug/l	0.94 lbs/day
Methyl chloride (HM)	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Methyl bromide (HM)	ug/l	lbs/day		ug/l	0.00 lbs/day
Bromoform (HM)	ug/l	lbs/day	360.0	ug/l	0.21 lbs/day
Dichlorobromomethane(ug/l	lbs/day	22.0	ug/l	0.01 lbs/day
Chlorodibromomethane	ug/l	lbs/day	34.0	ug/l	0.02 lbs/day
Hexachlorobutadiene(c)	ug/l	lbs/day	50.0	ug/l	0.03 lbs/day
Hexachlorocyclopentadi	ug/l	lbs/day	17000.0	ug/l	10.01 lbs/day
Isophorone	ug/l	lbs/day	600.0	ug/l	0.35 lbs/day
Naphthalene					
Nitrobenzene	ug/l	lbs/day	1900.0	ug/l	1.12 lbs/day
2-Nitrophenol	ug/l	lbs/day		ug/l	0.00 lbs/day
4-Nitrophenol	ug/l	lbs/day		ug/l	0.00 lbs/day
2,4-Dinitrophenol	ug/l	lbs/day		ug/l	8.25 lbs/day
4,6-Dinitro-o-cresol	ug/l	lbs/day	765.0	ug/l	0.45 lbs/day
N-Nitrosodimethylamine	ug/l	lbs/day	8.1	ug/l	0.00 lbs/day
N-Nitrosodiphenylamine	ug/l	lbs/day	16.0	ug/l	0.00 lbs/day
N-Nitrosodi-n-propylami	ug/l	lbs/day	1.4	ug/l	0.00 lbs/day
Pentachlorophenol	ug/l	lbs/day	8.2	_	0.00 lbs/day
1 Chtachiorophenoi	ug/i	ibs/day	0.2	ug/I	0.00 lbs/day

Dhanal	/1	lla a /al as r	4.65+06	/1	0.74E+02 lba/day
Phenol	ug/l	lbs/day	4.6E+06	~	2.71E+03 lbs/day
Bis(2-ethylhexyl)phthala	ug/l	lbs/day	5.9	•	0.00 lbs/day
Butyl benzyl phthalate	ug/l	lbs/day	5200.0	ug/l	3.06 lbs/day
Di-n-butyl phthalate	ug/l	lbs/day	12000.0	ug/l	7.07 lbs/day
Di-n-octyl phthlate		, .			
Diethyl phthalate	ug/l	lbs/day	120000.0	•	70.69 lbs/day
Dimethyl phthlate	ug/l	lbs/day	2.9E+06	•	1.71E+03 lbs/day
Benzo(a)anthracene (P/	ug/l	lbs/day		ug/l	0.00 lbs/day
Benzo(a)pyrene (PAH)	ug/l	lbs/day		ug/l	0.00 lbs/day
Benzo(b)fluoranthene (F	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Benzo(k)fluoranthene (F	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Chrysene (PAH)	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Acenaphthylene (PAH)					
Anthracene (PAH)	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Dibenzo(a,h)anthracene	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Indeno(1,2,3-cd)pyrene	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Pyrene (PAH)	ug/l	lbs/day	11000.0	ug/l	6.48 lbs/day
Tetrachloroethylene	ug/l	lbs/day	8.9	ug/l	0.01 lbs/day
Toluene	ug/l	lbs/day	200000	ug/l	117.81 lbs/day
Trichloroethylene	ug/l	lbs/day	81.0	ug/l	0.05 lbs/day
Vinyl chloride	ug/l	lbs/day	525.0	ug/l	0.31 lbs/day
···· , ··········	9,-	,		9	lbs/day
Pesticides					lbs/day
Aldrin	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Dieldrin	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Chlordane	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
4,4'-DDT	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
4,4'-DDE	_	lbs/day	0.0	ug/l	0.00 lbs/day
4,4'-DDD	ug/l	lbs/day	0.0	_	· · · · · · · · · · · · · · · · · · ·
alpha-Endosulfan	ug/l	•		ug/l	0.00 lbs/day
beta-Endosulfan	ug/l	lbs/day	2.0	ug/l	0.00 lbs/day
	ug/l	lbs/day	2.0	ug/l	0.00 lbs/day
Endosulfan sulfate	ug/l	lbs/day	2.0	ug/l	0.00 lbs/day
Endrin	ug/l	lbs/day		ug/l	0.00 lbs/day
Endrin aldehyde	ug/l	lbs/day	0.8	•	0.00 lbs/day
Heptachlor	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Heptachlor epoxide					
PCB's					0.00.11
PCB 1242 (Arochlor 124	ug/l	lbs/day		ug/l	0.00 lbs/day
PCB-1254 (Arochlor 12t	ug/l	lbs/day		ug/l	0.00 lbs/day
PCB-1221 (Arochlor 122	ug/l	lbs/day		ug/l	0.00 lbs/day
PCB-1232 (Arochlor 123	ug/l	lbs/day		ug/l	0.00 lbs/day
PCB-1248 (Arochlor 124	ug/l	lbs/day		ug/l	0.00 lbs/day
PCB-1260 (Arochlor 126	ug/l	lbs/day		ug/l	0.00 lbs/day
PCB-1016 (Arochlor 10 ⁻	ug/l	lbs/day	0.0	ug/l	0.00 lbs/day
Pesticide					
Toxaphene	ug/l		0.0	ug/l	0.00 lbs/day
Dioxin					
Dioxin (2,3,7,8-TCDD)	ug/l	lbs/day			

Metals				
Antimony	ug/l	lbs/day		
Arsenic	ug/l	lbs/day	4300.00 ug/l	2.53 lbs/day
Asbestos	ug/l	lbs/day		
Beryllium				
Cadmium				
Chromium (III)				
Chromium (VI)				
Copper				
Cyanide	ug/l	lbs/day	2.2E+05 ug/l	129.60 lbs/day
Lead	ug/l	lbs/day		
Mercury			0.15 ug/l	0.00 lbs/day
Nickel			4600.00 ug/l	2.71 lbs/day
Selenium	ug/l	lbs/day		
Silver	ug/l	lbs/day		
Thallium			6.30 ug/l	0.00 lbs/day
Zinc				

There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis.

VII. Mathematical Modeling of Stream Quality

Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible.

The modeling approach used in this analysis included one or a combination of the following models.

- (1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA).
- (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992.
- (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8
- (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

Coefficients used in the model were based, in part, upon the following references:

(1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985.

(2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644.

VIII. Modeling Information

The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions:

Flow, Q, (cfs or MGD) D.O. mg/l

Temperature, Deg. C. Total Residual Chlorine (TRC), mg/l

pH Total NH3-N, mg/l

BOD5, mg/l Total Dissolved Solids (TDS), mg/l Metals, ug/l Toxic Organics of Concern, ug/l

Other Conditions

In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Current Upstream Information

·	Stream Critical Low							
	Flow	Temp.	рН	T-NH3	BOD5	DO	TRC	TDS
	cfs	Deg. C		mg/l as N	mg/l	mg/l	mg/l	mg/l
Summer (Irrig. Season)	0.0	14.0	7.3	0.00	1.00	11.29	0.00	650.0
Fall	0.0	12.0	8.1	0.00	1.00		0.00	650.0
Winter	0.0	4.0	8.0	0.00	1.00		0.00	650.0
Spring	0.0	9.4	8.0	0.00	1.00		0.00	650.0
Dissolved	Al	As	Cd	CrIII	CrVI	Copper	Fe	Pb
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
All Seasons	1.59*	0.53*	0.053*	0.53*	2.65*	0.53*	0.83*	0.53*
Dissolved	Hg	Ni	Se	Ag	Zn	Boron		
Metals	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l		
All Seasons	0.0000	0.53*	1.06*	0.1*	0.053*	10.0		* 1/2 MDL
		_						

Projected Discharge Information

Season	Flow, MGD	Temp.	TDS mg/l	TDS tons/day
Summer	0.07000	31.3	316.00	0.09222
Fall	0.07000	23.4		
Winter	0.07000	17.7		
Spring	0.07000	25.8		

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

IX. Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows.

Effluent Limitation for Flow based upon Water Quality Standards

In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows:

Season	Daily Average	•
Summer	0.070 MGD	0.108 cfs
Fall	0.070 MGD	0.108 cfs
Winter	0.070 MGD	0.108 cfs
Spring	0.070 MGD	0.108 cfs

Flow Requirement or Loading Requirement

The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 0.07 MGD. If the discharger is allowed to have a flow greater than 0.07 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limitiation as indicated above; or, include loading effluent limits in the permit.

Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy

Effluent Toxicity will not occur in downstream segements if the values below are met.

WET Requirements	LC50 >	EOP Effluent	[Acute]
	IC25 >	99.1% Effluent	[Chronic]

Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows:

Season	Concentration			
Summer	25.0 mg/l as BOD5	14.6 lbs/day		
Fall	25.0 mg/l as BOD5	14.6 lbs/day		
Winter	25.0 mg/l as BOD5	14.6 lbs/day		
Spring	25.0 mg/l as BOD5	14.6 lbs/day		

Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows:

Season	Concentration
Summer	5.00
Fall	5.00
Winter	5.00
Spring	5.00

Effluent Limitation for Total Ammonia based upon Water Quality Standards

In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows:

_					
S	^	-	_	O	-
-	е	•	5	u	ш

	Concentration			Load		
Summer	4 Day Avg Chronic	4.9	mg/l as N	2.9	lbs/day	
	1 Hour Avg Acute	17.5	mg/l as N	10.2	lbs/day	
Fall	4 Day Avg Chronic	4.4	mg/l as N	2.6	lbs/day	
	1 Hour Avg Acute	14.3	mg/l as N	8.3	lbs/day	
Winter	4 Day Avg Chronic	4.6	mg/l as N	2.7	lbs/day	
	1 Hour Avg Acute	14.6	mg/l as N	8.5	lbs/day	
Spring	4 Day Avg Chronic	4.4	mg/l as N	2.6	lbs/day	
	1 Hour Avg Acute	14.3	mg/l as N	8.3	lbs/day	

Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 100.%.

Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards

In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows:

Season		Concentration		Load
Summer	4 Day Avg Chronic	0.011	mg/l	0.01 lbs/day
	1 Hour Avg Acute	0.019	mg/l	0.01 lbs/day
Fall	4 Day Avg Chronic	0.011	mg/l	0.01 lbs/day
	1 Hour Avg Acute	0.019	mg/l	0.01 lbs/day
Winter	4 Day Avg Chronic	0.011	mg/l	0.01 lbs/day
	1 Hour Avg Acute	0.019	mg/l	0.01 lbs/day
Spring	4 Day Avg Chronic	0.011	mg/l	0.00 lbs/day
	1 Hour Avg Acute	0.019	mg/l	0.00 lbs/day

Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards

Season		Concentration		Load	
Summer Fall Winter Spring	Maximum, Acute Maximum, Acute Maximum, Acute 4 Day Avg Chronic	1205.1 1205.1 1205.1 1205.1	mg/l mg/l mg/l mg/l	0.35 0.35 0.35 0.35	tons/day tons/day tons/day tons/day
Colorado S	alinity Forum Limits	Determine	ed by Permi	tting Section	

Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards

In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 300 mg/l):

4 Day Average			1 Hour			
	Concen	tration	Load	Concentration		Load
Aluminum	N/A		N/A	756.9	ug/l	0.5 lbs/day
Arsenic	151.38	ug/l	0.1 lbs/day	343.1	ug/l	0.2 lbs/day
Cadmium	1.91	ug/l	0.0 lbs/day	5.6	ug/l	0.0 lbs/day
Chromium III	213.87	ug/l	0.1 lbs/day	4,474.6	ug/l	3.1 lbs/day
Chromium VI	11.06	ug/l	0.0 lbs/day	16.1	ug/l	0.0 lbs/day
Copper	24.07	ug/l	0.0 lbs/day	39.8	ug/l	0.0 lbs/day
Iron	N/A		N/A	1,009.2	ug/l	0.7 lbs/day
Lead	12.99	ug/l	0.0 lbs/day	333.6	ug/l	0.2 lbs/day
Mercury	0.01	ug/l	0.0 lbs/day	2.4	ug/l	0.0 lbs/day
Nickel	133.34	ug/l	0.1 lbs/day	1,199.4	ug/l	0.8 lbs/day
Selenium	4.63	ug/l	0.0 lbs/day	20.2	ug/l	0.0 lbs/day
Silver	N/A	ug/l	N/A lbs/day	25.3	ug/l	0.0 lbs/day

Zinc	306.74 ug/l	0.1 lbs/day	306.7	ug/l	0.2 lbs/day
Cyanide	5.25 ug/l	0.0 lbs/day	22.2	ug/l	0.0 lbs/day

Effluent Limitations for Heat/Temperature based upon Water Quality Standards

Summer	16.0 Deg. C.	60.8 Deg. F
Fall	14.0 Deg. C.	57.2 Deg. F
Winter	6.0 Deg. C.	42.8 Deg. F
Spring	11.4 Deg. C.	52.6 Deg. F

Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards

In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows:

	4 Day Average		1 Hour A		
	Concentration	Load	Concentration		Load
Aldrin			1.5E+00	ug/l	1.63E-03 lbs/day
Chlordane	4.30E-03 ug/l	2.51E-03 lbs/day	1.2E+00	ug/l	1.30E-03 lbs/day
DDT, DDE	1.00E-03 ug/l	5.84E-04 lbs/day	5.5E-01	ug/l	5.97E-04 lbs/day
Dieldrin	1.90E-03 ug/l	1.11E-03 lbs/day	1.3E+00	ug/l	1.36E-03 lbs/day
Endosulfan	5.60E-02 ug/l	3.27E-02 lbs/day	1.1E-01	ug/l	1.19E-04 lbs/day
Endrin	2.30E-03 ug/l	1.34E-03 lbs/day	9.0E-02	ug/l	9.76E-05 lbs/day
Guthion	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.08E-05 lbs/day
Heptachlor	3.80E-03 ug/l	2.22E-03 lbs/day	2.6E-01	ug/l	2.82E-04 lbs/day
Lindane	8.00E-02 ug/l	4.67E-02 lbs/day	1.0E+00	ug/l	1.08E-03 lbs/day
Methoxychlor	0.00E+00 ug/l	0.00E+00 lbs/day	3.0E-02	ug/l	3.25E-05 lbs/day
Mirex	0.00E+00 ug/l	0.00E+00 lbs/day	1.0E-02	ug/l	1.08E-05 lbs/day
Parathion	0.00E+00 ug/l	0.00E+00 lbs/day	4.0E-02	ug/l	4.34E-05 lbs/day
PCB's	1.40E-02 ug/l	8.17E-03 lbs/day	2.0E+00	ug/l	2.17E-03 lbs/day
Pentachlorophenol	1.30E+01 ug/l	7.59E+00 lbs/day	2.0E+01	ug/l	2.17E-02 lbs/day
Toxephene	2.00E-04 ug/l	1.17E-04 lbs/day	7.3E-01	ug/l	7.92E-04 lbs/day

Effluent Targets for Pollution Indicators Based upon Water Quality Standards

In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows:

1 Hour Average

	Concentration	Loading	
Gross Beta (pCi/l)	50.0 pCi/L		
BOD (mg/l)	5.0 mg/l	3.5 lbs/day	
Nitrates as N	4.0 mg/l	2.8 lbs/day	
Total Phosphorus as P	0.05 mg/l	0.0 lbs/day	
Total Suspended Solids	90.0 mg/l	63.1 lbs/day	

Note: Pollution indicator targets are for information purposes only.

Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.)

In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows:

Maximum Concentration

		Concentration	Load	
Toxic C	Drganics			
Acenap	hthene	2.72E+03 ug/l	1.59E+00 lbs/day	
Acroleir	า	7.87E+02 ug/l	4.59E-01 lbs/day	
Acrylon	itrile	6.66E-01 ug/l	3.89E-04 lbs/day	
Benzen	e	7.17E+01 ug/l	4.18E-02 lbs/day	
Benzidi	ne	ug/l	lbs/day	
Carbon	tetrachloride	4.44E+00 ug/l	2.59E-03 lbs/day	
Chlorob	enzene	2.12E+04 ug/l	1.24E+01 lbs/day	
1,2,4-Tr	richlorobenzene			
Hexach	lorobenzene	7.77E-04 ug/l	4.54E-07 lbs/day	
1,2-Dich	nloroethane	9.99E+01 ug/l	5.83E-02 lbs/day	
1,1,1-Tr	richloroethane			
Hexach	loroethane	8.98E+00 ug/l	5.24E-03 lbs/day	
1,1-Dich	nloroethane			
1,1,2-Tr	richloroethane	4.24E+01 ug/l	2.47E-02 lbs/day	
1,1,2,2-	Tetrachloroethane	1.11E+01 ug/l	6.48E-03 lbs/day	
Chloroe	ethane			
Bis(2-ch	nloroethyl) ether	1.41E+00 ug/l	8.25E-04 lbs/day	
2-Chlore	oethyl vinyl ether			
2-Chlore	onaphthalene	4.34E+03 ug/l	2.53E+00 lbs/day	
2,4,6-Tr	richlorophenol	6.56E+00 ug/l	3.83E-03 lbs/day	
p-Chlore	o-m-cresol			
Chlorofe	orm (HM)	4.74E+02 ug/l	2.77E-01 lbs/day	
2-Chlore	ophenol	4.04E+02 ug/l	2.36E-01 lbs/day	
1,2-Dich	nlorobenzene	1.72E+04 ug/l	1.00E+01 lbs/day	
1,3-Dich	hlorobenzene	2.62E+03 ug/l	1.53E+00 lbs/day	

1,4-Dichlorobenzene	2.62E+03 ug/l	1.53E+00 lbs/day
3,3'-Dichlorobenzidine	7.77E-02 ug/l	4.54E-05 lbs/day
1,1-Dichloroethylene	3.23E+00 ug/l	1.89E-03 lbs/day
1,2-trans-Dichloroethylene1		
2,4-Dichlorophenol	7.97E+02 ug/l	4.65E-01 lbs/day
1,2-Dichloropropane	3.94E+01 ug/l	2.30E-02 lbs/day
1,3-Dichloropropylene	1.72E+03 ug/l	1.00E+00 lbs/day
2,4-Dimethylphenol	2.32E+03 ug/l	1.35E+00 lbs/day
2,4-Dinitrotoluene	9.18E+00 ug/l	5.36E-03 lbs/day
2,6-Dinitrotoluene		
1,2-Diphenylhydrazine	5.45E-01 ug/l	3.18E-04 lbs/day
Ethylbenzene	2.93E+04 ug/l	1.71E+01 lbs/day
Fluoranthene	3.73E+02 ug/l	2.18E-01 lbs/day
4-Chlorophenyl phenyl ether		
4-Bromophenyl phenyl ether		
Bis(2-chloroisopropyl) ether	1.72E+05 ug/l	1.00E+02 lbs/day
Bis(2-chloroethoxy) methane		
Methylene chloride (HM)	1.61E+03 ug/l	9.43E-01 lbs/day
Methyl chloride (HM)		
Methyl bromide (HM)		
Bromoform (HM)	3.63E+02 ug/l	2.12E-01 lbs/day
Dichlorobromomethane(HM)	2.22E+01 ug/l	1.30E-02 lbs/day
Chlorodibromomethane (HM)	3.43E+01 ug/l	2.00E-02 lbs/day
Hexachlorocyclopentadiene	1.72E+04 ug/l	1.00E+01 lbs/day
Isophorone	6.06E+02 ug/l	3.53E-01 lbs/day
Naphthalene		
Nitrobenzene	1.92E+03 ug/l	1.12E+00 lbs/day
2-Nitrophenol		
4-Nitrophenol		
2,4-Dinitrophenol	1.41E+04 ug/l	8.25E+00 lbs/day
4,6-Dinitro-o-cresol	7.72E+02 ug/l	4.51E-01 lbs/day
N-Nitrosodimethylamine	8.17E+00 ug/l	4.77E-03 lbs/day
N-Nitrosodiphenylamine	1.61E+01 ug/l	9.43E-03 lbs/day
N-Nitrosodi-n-propylamine	1.41E+00 ug/l	8.25E-04 lbs/day
Pentachlorophenol	8.28E+00 ug/l	4.83E-03 lbs/day
Phenol	4.64E+06 ug/l	2.71E+03 lbs/day
Bis(2-ethylhexyl)phthalate	5.95E+00 ug/l	3.48E-03 lbs/day
Butyl benzyl phthalate	5.25E+03 ug/l	3.06E+00 lbs/day
Di-n-butyl phthalate	1.21E+04 ug/l	7.07E+00 lbs/day
Di-n-octyl phthlate		
Diethyl phthalate	1.21E+05 ug/l	7.07E+01 lbs/day
Dimethyl phthlate	2.93E+06 ug/l	1.71E+03 lbs/day
Benzo(a)anthracene (PAH)	3.13E-02 ug/l	1.83E-05 lbs/day
Benzo(a)pyrene (PAH)	3.13E-02 ug/l	1.83E-05 lbs/day
Benzo(b)fluoranthene (PAH)	3.13E-02 ug/l	1.83E-05 lbs/day
Benzo(k)fluoranthene (PAH)	3.13E-02 ug/l	1.83E-05 lbs/day
Chrysene (PAH)	3.13E-02 ug/l	1.83E-05 lbs/day
Acenaphthylene (PAH)		
Anthracene (PAH)		
Dibenzo(a,h)anthracene (PAH)	3.13E-02 ug/l	1.83E-05 lbs/day
Indeno(1,2,3-cd)pyrene (PAH)	3.13E-02 ug/l	1.83E-05 lbs/day

D (DALI)	4.445.04.	0.405:00 !! /!
Pyrene (PAH)	1.11E+04 ug/l	6.48E+00 lbs/day
Tetrachloroethylene	8.98E+00 ug/l	5.24E-03 lbs/day
Toluene	2.02E+05 ug/l	1.18E+02 lbs/day
Trichloroethylene	8.17E+01 ug/l	4.77E-02 lbs/day
Vinyl chloride	5.30E+02 ug/l	3.09E-01 lbs/day
Pesticides		
Aldrin	1.41E-04 ug/l	8.25E-08 lbs/day
Dieldrin	1.41E-04 ug/l	8.25E-08 lbs/day
Chlordane	5.95E-04 ug/l	3.48E-07 lbs/day
4,4'-DDT	5.95E-04 ug/l	3.48E-07 lbs/day
4,4'-DDE	5.95E-04 ug/l	3.48E-07 lbs/day
4,4'-DDD	8.48E-04 ug/l	4.95E-07 lbs/day
alpha-Endosulfan	2.02E+00 ug/l	1.18E-03 lbs/day
beta-Endosulfan	2.02E+00 ug/l	1.18E-03 lbs/day
Endosulfan sulfate	2.02E+00 ug/l	1.18E-03 lbs/day
Endrin	8.17E-01 ug/l	4.77E-04 lbs/day
	•	•
Endrin aldehyde	8.17E-01 ug/l	4.77E-04 lbs/day
Heptachlor	2.12E-04 ug/l	1.24E-07 lbs/day
Heptachlor epoxide		
DADI		
PCB's	4 = 4 = 0 = "	0.055.00 !! /!
PCB 1242 (Arochlor 1242)	4.54E-05 ug/l	2.65E-08 lbs/day
PCB-1254 (Arochlor 1254)	4.54E-05 ug/l	2.65E-08 lbs/day
PCB-1221 (Arochlor 1221)	4.54E-05 ug/l	2.65E-08 lbs/day
PCB-1232 (Arochlor 1232)	4.54E-05 ug/l	2.65E-08 lbs/day
PCB-1248 (Arochlor 1248)	4.54E-05 ug/l	2.65E-08 lbs/day
PCB-1260 (Arochlor 1260)	4.54E-05 ug/l	2.65E-08 lbs/day
PCB-1016 (Arochlor 1016)	4.54E-05 ug/l	2.65E-08 lbs/day
Pesticide		
Toxaphene	7.57E-04 ug/l	4.42E-07 lbs/day
Metals		
Antimony	ug/l	lbs/day
Arsenic	ug/l	lbs/day
Asbestos	ug/l	lbs/day
Beryllium	-	-
Cadmium		
Chromium (III)		
Chromium (VI)		
Copper	ug/l	lbs/day
Cyanide	ug/l	lbs/day
Lead	ugn	iso, ady
Mercury	ug/l	lbs/day
Nickel	ug/l	lbs/day
Selenium	ug/I	ib5/uay
Silver		
Thallium	ua/I	lhe/day
	ug/l	lbs/day
Zinc		

Dioxin Dioxin (2,3,7,8-TCDD)

1.41E-08 ug/l

8.25E-12 lbs/day

Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule

	Class 4 Acute Agricultural ug/l	Class 3 Acute Aquatic Wildlife ug/l	Acute Toxics Drinking Water Source ug/l	Acute Toxics Wildlife ug/l	1C Acute Health Criteria ug/l	Acute Most Stringent ug/l	Class 3 Chronic Aquatic Wildlife ug/l
Aluminum		756.9				756.9	N/A
Antimony				4339.7		4339.7	
Arsenic	100.9	343.1			0.0	100.9	151.4
Asbestos						0.00E+00	
Barium						0.0	
Beryllium						0.0	
Cadmium	10.1	5.6			0.0	5.6	1.9
Chromium (III)		4474.6			0.0	4474.6	213.9
Chromium (VI)	100.9	16.1			0.0	16.11	11.06
Copper	201.8	39.8				39.8	24.1
Cyanide		22.2	222031.6			22.2	5.2
Iron		1009.2				1009.2	
Lead	100.9	333.6			0.0	100.9	13.0
Mercury		2.42		0.15	0.0	0.15	0.012
Nickel		1199.4		4642.5		1199.4	133.3
Selenium	50.4	20.2			0.0	20.2	4.6
Silver		25.3			0.0	25.3	
Thallium				6.4		6.4	
Zinc		306.7				306.7	306.7
Boron	756.9					756.9	

Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL]

[If Acute is more stringent than Chronic, then the Chronic takes on the Acute value.]

	WLA Acute ug/l	WLA Chronic ug/l	;
Aluminum	756.9	N/A	
Antimony	4339.71		
Arsenic	100.9	151.4	Acute Controls
Asbestos	0.00E+00		
Barium			
Beryllium			
Cadmium	5.6	1.9	
Chromium (III)	4474.6	214	
Chromium (VI)	16.1	11.1	

Copper	39.8	24.1
Cyanide	22.2	5.2
Iron	1009.2	
Lead	100.9	13.0
Mercury	0.151	0.012
Nickel	1199.4	133
Selenium	20.2	4.6
Silver	25.3	N/A
Thallium	6.4	
Zinc	306.7	306.7
Boron	756.93	

Other Effluent Limitations are based upon R317-1.

E. coli 126.0 organisms per 100 ml

X. Antidegradation Considerations

The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses.

The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources.

An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II Review is not required.

XI. Colorado River Salinity Forum Considerations

Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value.

This doesn't apply to facilities that do not discharge to the Colorado River Basin.

XII. Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important downstream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

XIII. Notice of UPDES Requirement

This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information. Permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations provided that the values in this wasteload analysis [TMDL] are not compromised. See special provisions in Utah Water Quality Standards for adjustments in the Total Dissolved Solids values based upon background concentration.

Utah Division of Water Quality 801-538-6052

File Name: Fresenius_WLA_2021.xlsm

APPENDIX - Coefficients and Other Model Information

CBOD	CBOD	CBOD	REAER.	REAER.	REAER.	NBOD	NBOD
Coeff.	Coeff.	Coeff.	Coeff.	Coeff.	Coeff.	Coeff.	Coeff.
(Kd)20	FORCED	(Ka)T	(Ka)20	FORCED	(Ka)T	(Kn)20	(Kn)T
1/day	(Kd)/day	1/day	(Ka)/day	1/day	1/day	1/day	1/day
2.000	0.000	0.803	20.000	20.000	12.487	0.400	0.087
Open	Open	NH3	NH3	NO2+NO3	NO2+NO3	TRC	TRC
Coeff.	Coeff.	LOSS		LOSS		Decay	
(K4)20	(K4)T	(K5)20	(K5)T	(K6)20	(K6)T	K(CI)20	K(CI)(T)
1/day	1/day	1/day	1/day	1/day	1/day	1/day	1/day
0.000	0.000	4.000	1.607	0.000	0.000	32.000	10.059
BENTHIC	BENTHIC						
DEMAND	DEMAND						
(SOD)20	(SOD)T						
gm/m2/day	gm/m2/day						
1.000	0.286						
K1	K2	К3	K4	K5	K6	K(CI)	S
CBOD	Reaer.	NH3	Open	NH3 Loss	NO2+3	TRĆ	Benthic
{theta}	{theta}	{theta}	{theta}	{theta}	{theta}	{theta}	{theta}
1.0	1.0	1.1	1.0	1.0	1.0	1.1	1.1

Antidegredation Review

An antidegradation review (ADR) was conducted to determine whether the proposed activity complies with the applicable antidegradation requirements for receiving waters that may be affected. The Level I ADR evaluated the criteria of R317-2-3.5(b) and determined that a Level II antidegradation Review is not required.

DWQ-2021-005443